
STENCIL-AWARE GPU OPTIMIZATION OF ITERATIVE SOLVERS∗

CHEKURI CHOUDARY,3 JESWIN GODWIN,2 JUSTIN HOLEWINSKI,2

DEEPAN KARTHIK,2 DANIEL LOWELL,1 AZAMAT MAMETJANOV,1

BOYANA NORRIS,1 GERALD SABIN,3 P. SADAYAPPAN2

1MATHEMATICS AND COMPUTER SCIENCE DIVISION
ARGONNE NATIONAL LABORATORY

ARGONNE, IL 60439
[DLOWELL,AZAMAT,NORRIS]@MCS.ANL.GOV

2DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
OHIO STATE UNIVERSITY

COLUMBUS, OH 43210
[GODWIN,HOLEWINS,BALASUBD,SADAY]@CSE.OHIO-STATE.EDU

3RNET TECHNOLOGIES, INC.
DAYTON, OH 45459

[CCHOUDARY,GSABIN]@RNET-TECH.COM

Abstract. Numerical solutions of nonlinear partial differential equations frequently rely on
iterative Newton-Krylov methods, which linearize a finite-difference stencil-based discretization of
a problem, producing a sparse matrix with regular structure. Knowledge of this structure can
be used to exploit parallelism and locality of reference on modern cache-based multi- and many-
core architectures, achieving high performance for computations underlying commonly used iterative
linear solvers. In this paper we describe our approach to sparse matrix data structure design and
our implementation of the kernels underlying iterative linear solvers in PETSc. We also describe
autotuning of CUDA implementations based on high-level descriptions of the stencil-based matrix
and vector operations.

Key words. structured grid, sparse matrix format, iterative solvers, autotuning, GPGPU,
PETSc

AMS subject classifications. 65Y10, 65F50, 15A06, 68N19

1. Introduction. Many scientific applications rely on high-performance numer-
ical libraries, such as Hypre [17], PETSc [5–7], SuperLU [19], and Trilinos [27], for
providing accurate and fast solutions to problems modeled by using nonlinear partial
differential equations (PDEs). Thus, the bulk of the burden in achieving good perfor-
mance and portability is placed on the library implementors, largely freeing computa-
tional scientists from low-level performance optimization and portability concerns. At
the same time, the increasing availability of hybrid CPU/accelerator architectures is
making the task of providing both portability and high performance in both libraries
and applications increasingly challenging. The latest Top500 list [2] contains thirty-
nine supercomputing systems with GPGPUs. Amazon has announced the availability
of Cluster GPU Instances for Amazon EC2. More and more researchers have access
to GPU clusters instead of CPU clusters for large-scale computation problems in ar-
eas such as high energy physics, scientific simulation, data mining, climate forecast,
and earthquake prediction. Relying entirely on compilers for code optimization does
not produce satisfactory results, in part because the languages in which libraries are
implemented (C, C++, Fortran) fail to expose sufficient information required for ag-
gressive optimizations, and in part because of the tension between software design
and performance—a well-engineered, dynamically extensible library is typically much
more difficult to optimize through traditional compiler approaches.

∗This work builds on and significantly extends previous work by the authors described in [15,20].

1

[DLOWELL,AZAMAT,NORRIS]@MCS.ANL.GOV
[GODWIN,HOLEWINS,BALASUBD,SADAY]@CSE.OHIO-STATE.EDU
[CCHOUDARY,GSABIN]@RNET-TECH.COM

2 Choudary, Godwin, Holewinski, Karthik, Lowell, Mametjanov, Norris, Sabin, Sadayappan

Our goal is to tackle the challenges in achieving the best possible performance on
hybrid CPU/ GPGPU architectures at the library level by exploiting known problem
structure and algorithmic properties. Unlike methods that focus exclusively on the
algorithms and their implementations, our approach considers both the principal data
structures and the operations on them. We focus on structured grid applications and
PETSc, a widely used library for the nonlinear solution of PDE-based problems.
Performance is typically dominated by the linear solution; hence, we consider the
sparse matrix and vector data types and associated operations.

Our contributions can be summarized as follows.
• A structured grid-based matrix data structure that facilitates SIMD paral-

lelism better than general sparse matrix formats
• Manually optimized matrix and vector kernel implementations
• Autotuning support in Orio for CUDA code optimization based on high-level,

simple definitions of the matrix and vector kernels used in iterative linear
solvers in PETSc

• Entire PETSc-based application execution on the GPGPU, including appli-
cation-specific functions

The rest of the paper is organized as follows. Section 2 describes existing sparse
matrix formats and the software packages we use and extend for this work. Section 3
presents our technical approach to the design of a new stencil-based matrix data
structure and the implementation and autotuning of key matrix and vector kernels on
the GPU. In Section 4 we present kernel performance results, as well as a comparison
of GPU and CPU performance for a complete application. In Section 5 we review
related work and conclude with a summary and future work description in Section 6.

2. Background. We begin our discussion with a brief contextual overview of
storage formats and software packages used in this work.

2.1. Sparse Matrix Storage Formats. Bell and Harland [8] proposed several
sparse matrix storage formats, each optimized for different use cases. In this section,
we briefly describe three prominent formats: compressed sparse row (CSR), blocked
CSR, diagonal (DIA), and ELLPACK. Figure 2.1 shows these different formats. The
libraries for linear algebraic computations and numerical simulations support other
formats as well. For example, the PETSc library supports CSR, blocked CSR, and a
few other sparse matrix formats. The Cusp library supports CSR, DIA, ELLPACK,
and some other formats.

2.1.1. Compressed Sparse Row Format. CSR is a matrix storage technique
that aims to minimize the storage for arbitrary sparse matrices. In this format,
the nonzero elements in each row of the sparse matrix are stored contiguously. The
rows containing only nonzero elements are stored in a single dense array (A). Two
additional vectors are used to track the column index of each nonzero element (J)
and the offset into A of the start of each row. The storage complexity for CSR format
is on the order of O(2Nnz +Nr + 1), where Nnz is the total number of nonzeros and
Nr is the number of rows. The CSR format requires indirection for accessing matrix
elements during matrix operations.

2.1.2. Blocked CSR. The blocked CSR representation exploits the blocking
structure that arises in certain applications. The storage format is similar to CSR
except that it is a blocked version. Instead of storing nonzero elements contiguously,
small two dimensional blocks with at least one nonzero element are flattened and
stored contiguously. Each block is padded with zeros to fill the block and is stored

Stencil-Aware GPU Optimization of Iterative Solvers 3

-2 0 2

0 3 5

0 2 1

1 6 9

8 2 3

3 7 0

4 4 0

3 0 5 0 0 0

0 2 0 1 0 0

1 0 6 0 9 0

0 8 0 2 0 3

0 0 3 0 7 0

0 0 0 4 0 4

3 5 2 1 1 6 9 8 2 3 3 7 4 4

0 2 1 3 0 2 4 1 3 5 2 4 3 5

0 2 4 7 10 12 15

0 1 0 1 2 1 2

0 8 24

3 5 0
2 1 0
1 6 9
8 2 3
3 7 0
4 4 0

0 2 0
1 3 0
0 2 4
1 3 5
2 4 0
3 5 0

3 0 0 2 5 0 0 1 1 0 0 8 6 0 0 2 9 0 0 3 3 0 0 4 7 0 0 4

A

J

I

Offsets

Data

(c) Diagonal

(e) Blocked CSR with block size = 2

(b) Original

A

(a) Compressed Sparse Row (CSR)

Column

Indices

J

I

A

J

I

Data

(d) ELLPACK

J

I

Fig. 2.1: Examples of common sparse matrix formats.

in a row major format. The additional vectors store the block column indices and
the offset into the start of each block row. The storage complexity for blocked CSR
format is on the order of O((Nb∗size)+Nb+(Nr/size)), where Nb is the total number
of blocks containing at least one nonzero element, size is the block size, and Nr is
the number of rows. The advantages of blocked CSR format are register blocking,
reduced indirection compared to CSR, and reduced storage space. The optimal block
size is matrix dependent and machine dependent and is usually obtained by using a
performance model [28].

2.1.3. Diagonal Format. DIA is specifically suitable for storing sparse matri-
ces that contain nonzero elements only along the matrix diagonals. In this format, the
diagonals with nonzero elements are laid out contiguously in a dense matrix structure
(data), starting with the lowest subdiagonal and ending with the highest superdiago-
nal. An additional vector stores the offset of each diagonal from the central diagonal.
The storage space for the diagonal format is on the order of O((Nd ∗N) +Nd), where
Nd is the number of occupied diagonals and N is the width of the matrix.

2.1.4. ELLPACK. The ELLPACK [1] format offers an efficient storage format
if the maximum number of nonzero elements in any row is significantly less than the
number of columns in the sparse matrix. If K is the maximum number of nonzero
elements in any row of a sparse matrix containing Nr rows, it is stored as an N ×K
matrix. Each row of this matrix contains contiguously stored nonzero elements of the
corresponding row in the sparse matrix. Each row is padded with zeros to contain K
elements. The column indices for elements in each row are stored as another N ×K
matrix. Consequently, the storage complexity is O(2 ∗N ∗K).

2.2. Software packages. This work relies on and extends two software pack-
ages: the Portable, Extensible Toolkit for Scientific Computation (PETSc) and the

4 Choudary, Godwin, Holewinski, Karthik, Lowell, Mametjanov, Norris, Sabin, Sadayappan

autotuning framework Orio.

2.2.1. PETSc. PETSc [5–7] is an object-oriented toolkit for the numerical so-
lution of nonlinear PDEs. Solver algorithms and data types, such as matrices and
vectors, are implemented as objects by using C. PETSc provides multiple implemen-
tations of key abstractions, including vector, matrix, mesh, and linear and nonlinear
solvers. This design allows seamless integration of new data structures and algorithms
into PETSc while reusing most of the existing parallel infrastructure and implementa-
tion without requiring modification to application codes. In terms of applications, our
focus is on finite-difference, stencil-based approximations, supported by the Newton-
Krylov solvers in PETSc, which solve nonlinear equations of the form f(u) = 0, where
f : Rn → Rn, at each timestep (for time-dependent problems). The time for solving
the linearized Newton systems is typically a significant fraction of the overall execu-
tion time. This motivates us to consider the numerical operations within the Krylov
method implementations as the first set of candidates for code generation and tuning.

2.2.2. Orio. Orio is an extensible framework for the definition of domain-specific
languages, including support for empirical autotuning of the generated code. In pre-
vious work, we showed that high-level computation specifications can be embedded
in existing C or Fortran codes by expressing them through annotations specified as
structured comments [16, 22], as illustrated in Figure 2.2. The performance of code
generated from such high-level specifications is almost always significantly better than
that of compiled C or Fortran code, and for composed operations it far exceeds that of
multiple calls to optimized numerical libraries. In this work, we describe an extension
of Orio for transforming existing C code into CUDA code and tuning it for different
GPU architectures.

Annotated Code Annotations
Parser

Code
Transformations

Empirical
Performance
Evaluation

Sequence of (Nested)
Annotated Regions

Transfomed Code Code
Generator

Optimized
Codebest performing version

Tuning
Specification

Search
Engine

Fig. 2.2: Orio autotuning process.

3. Approach. Our approach is a comprehensive strategy for exploiting the
known structure in finite-difference, discretization-based PDE solutions on regular
grids, by rethinking the key data structure and autotuning the kernels that typi-
cally dominate the runtime of large-scale applications involving nonlinear PDE so-
lutions using finite-difference or finite-volume approximations. Many other works
(e.g., [11, 25, 29]) explore this structure, but address only a portion of the relevant
kernels and typically rely on general sparse matrix formats such as those described in
Section 2.1.

Stencil-Aware GPU Optimization of Iterative Solvers 5

Structured grids are a key computational pattern in scientific computing that
approximates the solution of a differential equation by discretizing the problem domain
on a structured grid and computing the differences of the model function values at
neighboring grid points based on one of several possible stencils. An example is
the heat equation where the domain is uniformly partitioned and the temperature is
approximated at discrete points. Adding a time dimension to the problem domain
provides a model of heat dissipation. The standard approach to solving such problems
is to apply stencils at each point such that the temperature at a point in one time step
depends on the temperature of a set of neighboring points in a previous time step. The
set of neighboring points is determined by the dimensionality of the problem domain
d ∈ {1, 2, 3}, the shape of the stencil s ∈ {star, box}, and the stencil’s width w ∈ N .
For example, given a star-shaped stencil of width 1 applied to a two-dimensional
domain, each grid point interacts with four of its neighbors to the left, right, above,
and below its position within the grid.

Many applications, such as those based on finite-difference and finite-volume for-
mulations, use stencil-based structured grid computations. For explicit formulations,
the stencil function is applied to each element in the grid explicitly. For solvers based
on implicit formulations, however linear systems of equations arise, where the sparsity
pattern of the matrix or the linear systems bears a direct relationship to a regular
stencil around each grid point. For such applications, the compute performance of
the application is typically dominated by the linear solution.

An interesting case arises when we consider structured grids with higher dimen-
sional entities. Many applications use vector quantities at grid points and matrices
as coefficients that relate the grid points. The dimension of the vector at each grid
point is the number of degrees of freedom for the application. For such problems, the
storage format used for sparse matrix plays a significant role in the memory efficiency
and the performance of computational kernels such as matrix-vector multiplication
that arise in the iterative linear solver.

3.1. Structured Grid-Diagonal Format. Optimizing algorithms without con-
sidering the data structures limits the types and effectiveness of possible optimizations.
Hence, we begin by designing the sparse data structure for representing the linear sys-
tem in order to exploit the known structure and enable efficient parallelization and
memory access in the key computational kernels underlying Krylov iterative solvers.
The following disadvantages of sparse matrix formats commonly used for structured
grid computations on GPGPUs motivate our development of a new sparse matrix
format.

1. The CSR format requires indirection for both loop bounds and vector index-
ing. This indirection prevents most compiler optimizations. Moreover, SIMD
parallelism is constrained across the rows of the matrix.

2. The CSR format does not consider the diagonally dominant structure arising
in structured grid problems. This results in discontiguous memory accesses
to the input vector in sparse matrix-vector multiplication (SpMV).

3. The blocked CSR format provides reuse of the input vector in SpMV but still
suffers from the other disadvantages of CSR format.

4. The diagonal format requires extra zeros to fill the gaps in the diagonals
and hence results in increased memory bandwidth requirements and more
floating-point operations.

We introduce a specialized data structure called structured grid-diagonal format
(SG-DIA) for stencil-based structured grid computations. It is based on extensive

6 Choudary, Godwin, Holewinski, Karthik, Lowell, Mametjanov, Norris, Sabin, Sadayappan

experiments with linear systems arising in structured grid problems with degrees of
freedom greater than or equal to one.

Figure 3.1(a) shows a 3×3 grid with an overlayed 5-point stencil. If a 2x1 vector
quantity is considered at each grid point (i.e., two degrees of freedom), the structure
of the Jacobian in a typical numerical simulation would be as shown in Figure 3.1(b).
Each grid element in the mesh bears a direct relationship to a set of two rows in this
matrix. The matrix also contains entries for neighbors under Dirichlet or periodic
boundary conditions. The stencil function and the multiple degrees of freedom at
each grid point result in a blocked diagonal structure. We store this matrix based
on its number of degrees of freedom. Each blocked diagonal in the original matrix
becomes a pair of columns in our SG-DIA format. These columns are laid out as
shown in Figure 3.1(c). The layout is stored in a column-major format. The SG-DIA
format further encodes the offsets to the blocked diagonals from the main diagonal as
shown at the top of Figure 3.1(c). The blocked diagonals, the offsets, and the number
of degrees of freedom provide sufficient information to determine the positions of the
individual elements in the matrix.

00 00 00 00 57 58 93 94 125 126

00 00 00 00 59 60 95 96 127 128

00 00 25 26 61 62 97 98 129 130

00 00 27 28 63 64 99 100 131 132

00 00 29 30 65 66 101 102 133 134

00 00 31 32 67 68 103 104 135 136

1 2 33 34 69 70 105 106 137 138

3 4 35 36 71 72 107 108 139 140

5 6 37 38 73 74 109 110 141 142

7 8 39 40 75 76 111 112 143 144

9 10 41 42 77 78 113 114 145 146

11 12 43 44 79 80 115 116 147 148

13 14 45 46 81 82 117 118 00 00

15 16 47 48 83 84 119 120 00 00

17 18 49 50 85 86 121 122 00 00

19 20 51 52 87 88 123 124 00 00

21 22 53 54 89 90 00 00 00 00

23 24 55 56 91 92 00 00 00 00

57 58 93 94 125 126

59 60 95 96 127 128

25 26 61 62 97 98 129 130

27 28 63 64 99 100 131 132

 29 30 65 66 101 102 133 134

 31 32 67 68 103 104 135 136

1 2 33 34 69 70 105 106 137 138

3 4 35 36 71 72 107 108 139 140

 5 6 37 38 73 74 109 110 141 142

 7 8 39 40 75 76 111 112 143 144

 9 10 41 42 77 78 113 114 145 146

 11 12 43 44 79 80 115 116 147 148

 13 14 45 46 81 82 117 118

 15 16 47 48 83 84 119 120

 17 18 49 50 85 86 121 122

 19 20 51 52 87 88 123 124

 21 22 53 54 89 90

 23 24 55 56 91 92

-3 -1 0 1 3 Grid
Element

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3

4 5 6

7 8 9

(a)

(b) (a) (a) (b) (c)

Fig. 3.1: Specialized data structure for stencil-based structured grid computations.
(a) Sample structured grid with overlayed stencil. (b) Sparsity pattern of the Jacobian.
(c) The SG-DIA storage format.

For a problem with grid dimensions m×n×p, degrees of freedom df , and a k-point
star-type stencil function, the matrix contains k blocked diagonals. For example, in
Figure 3.1(b), there are five blocked diagonals for five stencil points, each color-coded
separately. In the SG-DIA format, the columns resulting from each blocked diagonal
are padded with zeros such that the height of each column is mnpdf . The width
of the matrix is kdf and the total number of matrix entries stored is mnpkd2

f . We
also store the offsets for each of the k blocked diagonals. Hence, the total number of
entries stored by SG-DIA is mnpkd2

f + k ≈ mnpkd2
f .

Stencil-Aware GPU Optimization of Iterative Solvers 7

The number of entries required to store the matrix arising in this problem in
the traditional diagonal format (DIA, see Section 2.1.3) is calculated as follows. Each
blocked diagonal resulting from a stencil point corresponds to (2df−1) diagonals in the
DIA format. For example, in Figure 3.1(b) the green blocked diagonal resulting from
two degrees of freedom corresponds to three diagonals in DIA format. However, since
the mesh elements are numbered sequentially in one of the three dimensions, bk2 c+ 1
blocked diagonals are adjacent to one another (red, light yellow, and dark yellow
blocked diagonals in Figure 3.1(b) correspond to seven diagonals in DIA format).
Hence, in order to store the matrix in DIA format, the total number of diagonals is
k(2df − 1)−bk2 c. Each diagonal requiring storage is padded with zeros to a length of

mnpdf . In addition, k(2df − 1)− bk2 c offsets for the diagonals are stored. Hence, the

number of elements stored by DIA is mnpkdf (2df− 3
2)+k(2df−1)−bk2 c ≈ 2(mnpkd2

f),
or roughly twice the memory used by the new SG-DIA format.

For CSR format, for the sake of simplicity (and without introducing significant
additional nonzeros for most problem sizes), assume zero-padding of some of the rows
to store kdf elements per row. The matrix has mnpdf rows, so the total number
of stored elements is 2mnpkd2

f + mnpdf + 1, or about twice the memory used by
SG-DIA. The SG-DIA and DIA formats avoid the column indices and the row offsets
that are required in CSR format. In addition, the SG-DIA format stores only the
offsets for the blocked diagonals, which is the number of stencil points k, whereas the
DIA format stores the offsets for all the diagonals, which is ≈ 2kdf .

Assuming 32-bit storage for matrix entries and the indices, SG-DIA uses approx-
imately half the storage space that the DIA uses. The conservation of storage space
has the following advantages on GPU accelerators. First, we require less total mem-
ory to store the sparse matrix. Modern GPU accelerators have up to 6 GB of off-chip
storage, whereas high-performance CPUs typically have 32-64 GB. The matrix oper-
ations for large problems require multiple kernel launches that consume a significant
amount of time in GPU applications. Memory conservation reduces the number of
kernel launches for such large problems (that do not entirely fit in the GPU mem-
ory). Second, less data needs to be transferred to the GPU. Data transfer cost is
a major bottleneck for GPU acceleration. Third, eliminating the extra zeros in the
DIA format reduces the number of floating-point operations in matrix computations.
For matrix-vector multiplication, the number of floating-point operations is twice the
number of stored matrix entries (multiply-add for each entry). By reducing the num-
ber of stored zeros compared with that of the DIA format, we approximately halve
the floating-point operations in SpMV.

Sparse Matrix-Vector Multiplication on GPUs. We developed a CUDA im-
plementation for sparse matrix-vector multiplication (SpMV: ~y = A~x) based on our
SG-DIA storage format shown in Figure 3.1(c). The pseudocode for this implementa-
tion is shown in Algorithm 1. The parameters A, x, and y are the input/output matrix
and vectors; VecSize is the size of the vectors in number of elements (m ∗ n ∗ p ∗ df);
NumDiags is the number of block diagonals (i.e., stencil points); DiagOffsets is the
offsets to the blocked diagonals; and DOF is the number of degrees of freedom. Each
GPU thread processes one element of the output vector ~y.

Each thread computes the dot product between the vector ~x and a row of the
matrix A. The sparsity pattern of the matrix allows us to form this dot product
by considering at most DOF ∗ NumDiags columns. Lines 1–3 initialize the kernel by
determining the ID of the current thread (implemented by the GetGlobalThreadId()
function), zeroing the summation variable, and precomputing the size, in elements, of

8 Choudary, Godwin, Holewinski, Karthik, Lowell, Mametjanov, Norris, Sabin, Sadayappan

each block diagonal.
The outer loop at line 4 processes each block diagonal. Lines 5–6 compute the

base offsets into the sparse matrix data structure and vector ~x. The inner loop at line
7 processes each column that falls into the current block diagonal. In our SG-DIA
sparse matrix representation, elements in the same row are offset by VecSize elements;
thus the ith element will be at offset VecSize∗ i. The TexSample(t, i) function accesses
t[i] using the texture memory hardware in the GPU device. The ysum variable is used
as the summation variable and is written to the correct element of ~y.

Algorithm 1: Pseudocode for the SpMV kernel.

Parameters: A, x, y, VecSize, NumDiags, DiagOffsets, DOF
1 idx ← GetGlobalThreadId ()
2 ysum ← 0
3 diag size ← VecSize ∗ DOF
4 foreach j ∈ [0,NumDiags− 1] do
5 d ← DiagOffsets[j]
6 offset ← diag size ∗ j + idx

7 xoff ← (
⌊

idx
DOF

⌋
+ d) ∗ DOF

8 foreach i ∈ [0,DOF− 1] do
9 coeff ← A[offset + VecSize ∗ i]

10 xval ← TexSample (x, xoff + i)
11 ysum ← ysum + coeff ∗ xval

12 end

13 end
14 y [idx] ← ysum

3.2. Autotuning. Our initial experience with the manually implemented SpMV
using the new data structure served as the basis for extending Orio with CUDA
code generation and optimization capabilities. As described in Section 2.2.2, Orio
provides an extensible framework for transformation and tuning of codes written in
different source and target languages, including transformations from a number of
simple languages (e.g., a restricted subset of C) to C and Fortran targets. We have
extended Orio with transformations for CUDA, called OrCuda, where code written
in simple, restricted C is transformed into code in CUDA C.

Because kernels containing computation-intensive loops dominate execution time
in the applications we are targeting, accelerating these kernels is a reasonable first
step. Similar to the approach we use for CPU optimizations, we annotate existing
C loops with transformation and tuning comments (specifications). Transformation
specs drive the translation of annotated code into the target language code. The
translated code is placed into a template main function, which can be compiled and
executed in order to evaluate its performance.

Transformations can be parameterized with respect to various performance-affecting
factors, such as the size of a grid of thread blocks with which to execute a given CUDA
kernel. Therefore, a transformation spec can generate a family of variant translations
for each parameter. Each of the variants is measured for its overall execution time
with the fastest chosen as the best-performing autotuned translation. This translation
replaces the existing code to take full advantage of GPU acceleration.

Example. To illustrate our transformation and tuning approach, we provide in
Figure 3.2 an example of annotated sparse matrix-vector multiplication, where the

Stencil-Aware GPU Optimization of Iterative Solvers 9

void MatMult SeqDia(double∗ A, double∗ x, double∗ y, int m, int n, int nos, int dof) {
int i , j , col ;
/∗@ begin PerfTuning (

def performance params {
param TC[] = range (32,1025,32);
param BC[] = range (14,113,14);
param UIF[] = range (1,6);
param PL[] = [16,48];
param CFLAGS[] = map(join,product([’’,’−use fast math ’],

[’’,’− O1’,’−O2’,’−O3 ’]));
}
def input params {

param m[] = [32,64,128,256,512];
param n[] = [32,64,128,256,512];
param nos = 5;
param dof = 1;
constraint sq = (m==n);

}
def input vars {

decl static double A[m∗n∗nos∗dof] = random;
decl static double x[m∗n∗dof] = random;
decl static double y[m∗n∗dof] = 0;
decl static int offsets [nos] = {−m∗dof,−dof,0,dof,m∗dof};
}
def build {

arg build command = ’nvcc −arch=sm 20 @CFLAGS’;
}
def performance counter {

arg repetitions = 5;
}

) @∗/
int nrows=m∗n;
int ndiags=nos;
/∗@ begin Loop(transform CUDA(threadCount=TC, blockCount=BC, preferL1Size=PL, unrollInner=UIF)
for (i = 0; i <= nrows−1; i++) {

for (j = 0; j <= ndiags−1; j++){
col = i + offsets [j];
if (col >= 0 && col < nrows)

y[i] += A[i+j∗nrows] ∗ x[col];
}
}
) @∗/
for(i = 0; i <= nrows−1; i++) {

for(j = 0; j <= ndiags−1; j++){
col = i + offsets [j];
if (col >= 0 && col < nrows)

y[i] += A[i+j∗nrows] ∗ x[col];
}
}
/∗@ end @∗/
/∗@ end @∗/
}

Fig. 3.2: Annotated matrix-vector multiplication.

matrix A respresents a SG-DIA compression of the sparse Jacobian matrix resulting
from applying a 2-D 5-point stencil on a 2-D grid for a problem with one degree of
freedom per grid point. Note that the longer comment containing the tuning spec (the
PerfTuning annotation) can be specified in a separate file and need not be embedded
in the source code. Here, the outer loop iterates over the rows, and the inner loop
iterates over the diagonals of the sparse matrix (the innermost loop is omitted because
this example considers df=1). The column index is based on an element’s row index
and the offset of the element’s diagonal. If the column index is within the boundaries
of the sparse matrix, then the corresponding elements of the matrix and the vector

10 Choudary, Godwin, Holewinski, Karthik, Lowell, Mametjanov, Norris, Sabin, Sadayappan

are multiplied and accumulated in the result vector.

To generate efficient CUDA code with Orio, we annotated the code with a trans-
formation and tuning specification. The transformation specs define a CUDA loop
translation with parameterized transformation arguments for thread count, block
count, and so forth. The body of the transformation spec contains unmodified C
language code; however, this can be replaced by a higher-level (domain-specific) lan-
guage code that captures salient computational features at a proper level of abstrac-
tion (e.g., stencil-based operations). Defining this and other domain languages and
using them instead of the current C-based approach are part of planned future work.

The tuning specs provide machine- and device-specific parameters for instantia-
tion of transformation variants, initialization of input variables used by transformed
code, and the command for building an executable. Note that one can build the
original code without performing any of the transformations—the annotation is non-
intrusive to existing code and does not impact its portability. In this example, the
performance of an executable will be averaged over five execution times. By default,
for smaller examples such as this one, an exhaustive strategy is used, where all pos-
sible combinations of performance parameters are explored. Other search methods
requiring fewer runs are also available in Orio [4,16]. The highest-performing version
replaces the annotated code in the final output of autotuning. Orio also optionally
performs validation of tuned kernels by comparing their results with those of the
original (not tuned) kernel.

3.2.1. Host Function. In CUDA, the host function allocates memory on the
device, transfers data from host memory to device memory, configures launch pa-
rameters of a kernel, and invokes the kernel. These activities are independent of the
annotated source code that is being transformed (except when the data is already on
the device) and vary only with respect to the data characteristics. OrCuda obtains
the data sizes from the input variable section of the tuning specs. Next, OrCuda
performs type inference and other analysis of the annotated code to identify scalars,
arrays, types of identifiers, and their uses and definitions. This information is used to
generate CUDA API calls to allocate device memory of proper size and type, transfer
the correct amount of data, and pass appropriate parameters to a kernel function.
An excerpt of the generated host function for the example in Figure 3.2 is listed in
Figure 3.3.

...
double ∗dev y, ∗dev A, ∗dev x;
...
dim3 dimGrid, dimBlock;
dimBlock.x=32;
dimGrid.x=14;
cudaMalloc(&dev y, m ∗n ∗dof∗sizeof(double));
...
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
...
cudaMemcpy(dev y, y, m ∗n ∗dof∗sizeof(double), cudaMemcpyHostToDevice);
...
orcu kernel5<<<dimGrid,dimBlock>>>(nrows,ndiags, dev offsets,dev y,dev A,dev x);
...
cudaDeviceSetCacheConfig(cudaFuncCachePreferNone);
...

Fig. 3.3: Excerpt from an instance of a host function.

Stencil-Aware GPU Optimization of Iterative Solvers 11

One of the important factors affecting the overall execution time of a kernel is
its configuration [24]. This configuration includes specifications of how many threads
are in a block and how many blocks are in a grid. OrCuda parameterizes these
dimensions in order to enable a search for the best configuration. Transformation
arguments threadCount and blockCount specify the dimensions of the grid of thread
blocks. The tuning specs define the domains of these parameters as range(l,u,i), which
is a Python-based sequence [l, u) in increments of i.

3.2.2. Thread count. The tuning specs vary from one device to another; how-
ever, we follow the general performance guidelines and technical specifications of
CUDA architectures [24] in defining the search space. For example, all three ex-
isting architectures specify 32 as the size of a warp—the smallest group of threads
that can be scheduled for execution on a streaming multiprocessor (SM). Thus, the
search space for thread counts starts at 32 in increments of 32. Based on the compute
capability of a device, we can determine the upper bound: 512 for Tesla and 1024 for
Fermi and Kepler architectures.

3.2.3. Block count. The scalability of the CUDA model derives from the notion
of thread blocks—independently executing groups of threads that can be scheduled
in any order across any number of SMs. While this restricts memory sharing across
two blocks by disallowing interblock synchronization, it scales the acceleration with
the capabilities of a device. The greater the number of SMs on a device, the greater
the level of parallelism. For example, on a device that has an array of 14 SMs (Tesla
C2070), up to 14 blocks can execute in parallel. Similarly, on a device with 30 SMs
(Tesla C1060), up to 30 blocks can execute in parallel.

Technical specifications define the maximum number of blocks that can be resident
on an SM at any time: 8 for Tesla and Fermi, 16 for Kepler architectures. Therefore,
we define the search space of block counts as a multiple of device SMs starting from the
minimum of the SM count up to maximum number of resident blocks. For example,
the tuning spec in Figure 3.2 is configured for a Tesla C2070 Fermi device, which has
14 SMs.

3.2.4. Stream count. Another configuration feature that can improve acceler-
ation is asynchronous concurrent execution via streams. Here, CUDA provides API
functions that return immediately after the invocation and execute in a particular
stream asynchronously to the host function or functions in other streams. This pro-
vides three types of concurrency: communication-hiding overlap of data transfer and
kernel execution (deviceOverlap==1), concurrent execution of kernels (concurrentK-
ernels==1), and concurrent data transfers between the host and the device in both
directions with overlapped kernel execution (asyncEngineCount==2). Support for
each of these depends on the capability of a device indicated by the respective device
property constraint.

OrCuda can query properties of a device by using the CUDA API and can de-
termine whether the device supports stream-based concurrency. If streaming is sup-
ported (deviceOverlap && concurrentKernels), OrCuda divides the input data (when
it is of uniform length) into equal-sized chunks and generates asynchronous data
transfer calls. Then, it generates concurrent invocations of kernels to execute on a
particular data chunk.

The transformation argument that controls streaming is streamCount. We define
its domain as range(1,17,1). When the count is one (default), OrCuda generates
synchronous calls; for counts greater than one, it generates streaming calls. According

12 Choudary, Godwin, Holewinski, Karthik, Lowell, Mametjanov, Norris, Sabin, Sadayappan

to the CUDA specs, the maximum number of streams is 16, which is the upper bound
of this parameter’s domain.

Note that prior to a transformation, OrCuda performs a sanity check of the trans-
formation arguments. If an argument’s value is beyond the capabilities of a device,
OrCuda raises an exception and does not perform the transformation. The tuning
framework catches the exception and supplies the next combination of transformation
argument values. This approach increases fault tolerance of the autotuning, ensuring
that the search is not interrupted when the tuning specs contain invalid parameter
ranges.

3.2.5. L1 size preference. On Fermi devices capable of caching global memory
accesses, CUDA provides an API to toggle the size of the L1 cache. The same on-
chip memory is used for L1 and block-level shared memory. One can set a preference
to allocate 16 KB for L1 and 48 KB for shared memory (the default) or 48 KB for
L1 and 16 KB for shared memory on Fermi devices. On Kepler devices, there is an
additional configuration of 32 KB for L1 and 32 KB for shared memory (cudaFunc-
CachePreferEqual). A larger L1 cache can increase the performance of cache-starved
kernels. Because this is just a preference, the CUDA runtime system ultimately de-
cides whether to actually allocate the requested L1 size based on shared-memory
requirements for a thread block.

OrCuda can generate the host-side API calls to set the preferred L1 size prior to
the invocation of a kernel and to reset the preference to none after the invocation.
Figure 3.3 illustrates an example of this capability.

3.2.6. Compiler flags. CUDA uses the nvcc compiler driver to generate PTX
(assembly) code for further compilation into machine binaries. The -arch=sm xx
compiler option determines the compute capability when compiling kernel C code
into PTX code. Other compiler flags can also be passed to nvcc in order to optimize
the generated code. OrCuda uses the @CFLAGS build command parameter to specify
various compiler option configurations for tuning. These configurations are generated
by a Python-based expression for a cross-product of sequences of mutually exclusive
options, which are then joined to form a single compiler option string. The tuning
specs in Figure 3.2 provide an example of this functionality.

3.2.7. Device Functions. OrCuda transforms the annotated code and places
the result into the body of a kernel function. All the identifiers used in the function
become kernel parameters with a corresponding type. The primary transformation is
the conversion of the outer loop into a loop executable by a single thread with the
loop increment equal to the size of the grid of thread blocks. Figure 3.4 illustrates
an example of a kernel function. Here, the thread ID is calculated based on the
CUDA block and thread indices. Similarly, the grid size is based on the block and
grid dimensions.

3.2.8. Reductions. OrCuda analyzes the annotated code to determine whether
a loop performs an elementwise array update or array reduction. If it is not a reduc-
tion, the kernel consists of the transformed loop. Otherwise, the results of each thread
are reduced within a thread block. If the input size is greater than a block’s dimension,
OrCuda generates a loop within the host function that performs cascading reductions
across blocks.

Figure 3.4 illustrates the binary reduction, where threads in the first half of a
block accumulate results of both halves. This continues until only 64 elements are
left to reduce, in which case a warp performs the last SIMD synchronous reduce [24].

Stencil-Aware GPU Optimization of Iterative Solvers 13

/∗ for (int i=0; i<=n−1; i++)
r+=x[i]∗y[i]; ∗/

global void orcu kernel3(const int n, double∗ y, double∗ x,
double∗ reducts) {

const int tid=blockIdx.x∗blockDim.x+threadIdx.x;
const int gsize=gridDim.x∗blockDim.x;

shared double shared y[128];
shared double shared x[128];

double orcu var5=0;
for (int i=tid; i<=n−1; i+=gsize) {

shared y[threadIdx.x]=y[tid];
shared x[threadIdx.x]=x[tid];
orcu var5=orcu var5+shared x[threadIdx.x]∗shared y[threadIdx.x];
}
/∗reduce single−thread results within a block∗/

shared double orcu vec6[128];
orcu vec6[threadIdx.x]=orcu var5;

syncthreads();
if (threadIdx.x<64)

orcu vec6[threadIdx.x]+=orcu vec6[threadIdx.x+64];
syncthreads();

if (threadIdx.x<32)
orcu warpReduce64(threadIdx.x,orcu vec6);
syncthreads();

if (threadIdx.x==0)
reducts[blockIdx.x]=orcu vec6[0];

}
device void orcu warpReduce64(int tid, volatile double∗ reducts) {
reducts[tid]+=reducts[tid+32];
reducts[tid]+=reducts[tid+16];
reducts[tid]+=reducts[tid+8];
reducts[tid]+=reducts[tid+4];
reducts[tid]+=reducts[tid+2];
reducts[tid]+=reducts[tid+1];
}

Fig. 3.4: Instance of a reduction kernel and a device function.

3.2.9. Caching into shared memory. On-chip shared memory has substan-
tially lower latency than does off-chip global memory [24]. On Tesla devices that
do not have L1/L2 caches, caching data in shared memory can improve a kernel’s
performance. On devices with L1/L2 caches, caching into underutilized shared mem-
ory can also improve performance. OrCuda parameterizes the choice of caching into
shared memory by using the transformation argument cacheBlocks, which can have
a Boolean value. Figure 3.4 illustrates a transformation variant when block-level
caching is enabled (e.g., shared x array).

3.2.10. Unrolling inner loops. To improve performance of kernels that con-
tain inner loops, OrCuda generates a “#pragma unroll n” directive prior to the
inner loop in order to indicate that the compiler should unroll the inner loop n times.
Figure 3.2 illustrates an example of specifying transformation argument unrollInner
with a range of [1, 6), which corresponds to either no unrolling or unrolling up to the
maximum number of five diagonals.

The transformations described here are an initial subset of the possible optimiza-
tions. We are exploring other general and domain-specific transformations to extend
OrCuda.

4. Performance Evaluation. Table 4.1 lists the platforms used for evaluating
the performance of the new sparse matrix type and associated manually implemented
and autotuned kernels. The development and initial testing of the sparse matrix

14 Choudary, Godwin, Holewinski, Karthik, Lowell, Mametjanov, Norris, Sabin, Sadayappan

Table 4.1: GPU platforms used for evaluation (the devices marked with * were used
for autotuning).

Quadroplex Tesla Tesla Tesla Tesla
S2200 C1060* C2050 M2070 C2070*

Compute Capability 1.3 1.3 2.0 2.0 2.0
CUDA Cores 240 240 448 448 448

SM Count 30 30 14 14 14
Clock Rate 1.30 GHz 1.30 GHz 1.15 Ghz 1.15 GHz 1.15 GHz

Global Memory 4,096 MB 4,095 MB 2,687 MB 5,375 MB 5,375 MB
Shared Memory 16 KB 16 KB 48 KB 48 KB 48 KB

Memory Bus Width 512-bit 512-bit 384-bit 384-bit 384-bit
Peak Memory Clock 800 MHz 800 MHz 1,500 MHz 1,566 MHz 1,494 MHz

Registers/SM 16,384 16,384 32,768 32,768 32,768
Max Threads/Block 512 512 1,024 1,024 1,024
Max Threads/SM 1,024 1,024 1,536 1,536 1,536

L2 Cache Size – – 786 KB 786 KB 768 KB

data structure were performed on the Quadroplex S2200 and Tesla C2050 and M2070
because these were the GPUs most readily available to the portion of the team who
was primarily responsible for the data structure design. The autotuning experiments
take a significant amount of time and are best performed on a dedicated system;
hence, we performed the tuning on the C1060 and C2070 cards, which were most
readily available to the autotuning team members and are identical or similar to the
Quadroplex S2200 and M2070, respectively. The code was compiled with Intel v. 11
compilers and nvcc 4.2.

4.1. Kernel Performance. To study the effects of different degrees of freedom,
we evaluate the performance of the SG-DIA storage format and the matrix-vector
product kernel (SpMV) implementation described in Section 3.1 on three NVIDIA
GPU architectures: Quadroplex S2200, Tesla C2050, and Tesla M2070. We generate
test matrices with sparsity patterns that arise in structured grid applications with
multiple degrees of freedom. We compare the performance of the SG-DIA format
with different sparse matrix storage formats available in the Cusp library. Figure 4.1
shows the performance of the SG-DIA format for two grid sizes compared with Cusp
implementations of other formats for both 32-bit single-precision floating-point num-
bers and 64-bit double-precision floating-point numbers. As shown in the figure, our
kernel achieves higher performance compared with that of all other matrix formats as
we increase the number of degrees of freedom in the problem.

Table 4.2 lists the initial set of kernels we targeted for autotuning based on their
use by the Krylov PETSc solvers. The operation notation is as follows: A designates
a matrix; x, x1, . . . , xn, y, and w are vectors; and α, α1, . . . , αn are scalars.

We compare the performance of the kernels in Table 4.2 tuned with OrCuda with
that of different library-based implementations. PETSc already includes vector and
matrix types with GPU implementations that rely on Cusp [13] and Thrust [10]. While
PETSc does not use cuBLAS [23], we use it as a baseline for comparison with the
different vector operation implementations because it is the best-performing among
the available library options.

Figure 4.2 shows the execution times of the autotuned CUDA code computing
dense vector 2-norm and dot product for three vector sizes (105, 106, and 107), nor-
malized by the kernel times for the corresponding cuBLAS implementations. In all
cases for both devices, the autotuned kernels outperform the other versions. A more

Stencil-Aware GPU Optimization of Iterative Solvers 15

1 2 3 4 5 6
Degrees of Freedom

0

10

20

30

40

G
Fl

op
/s

Tesla M2070 - 2D - 5122

CSR - Single
CSR - Double

DIA - Single
DIA - Double

ELLPACK - Single
ELLPACK - Double

SG-DIA - Single
SG-DIA - Double

1 2 3 4 5 6
Degrees of Freedom

0

10

20

30

40

G
Fl

op
/s

Tesla M2070 - 3D - 643

1 2 3 4 5 6
Degrees of Freedom

0

10

20

30

40

G
Fl

op
/s

Tesla C2050 - 2D - 5122

1 2 3 4 5 6
Degrees of Freedom

0

10

20

30

40

G
Fl

op
/s

Tesla C2050 - 3D - 643

1 2 3 4 5 6
Degrees of Freedom

0

10

20

30

40

G
Fl

op
/s

Quadro Plex S2200 S4 - 2D - 5122

1 2 3 4 5 6
Degrees of Freedom

0

10

20

30

40

G
Fl

op
/s

Quadro Plex S2200 S4 - 3D - 643

Fig. 4.1: Performance of SpMV using the new SG-DIA matrix format, compared
with other sparse matrix formats in the Cusp library.

Table 4.2: Kernel specifications.

Kernel Operation
matVec y = Ax

vecAXPY y = αx+ y
vecMAXPY y = y + α1x1 + α2 x2 + . . .+ αnxn

vecDot w = x · y
vecNorm2 ‖x‖2
vecScale w = αw

vecWAXPY w = y + αx

complete comparison of kernel performance for the kernels in Table 4.2, showing sim-

16 Choudary, Godwin, Holewinski, Karthik, Lowell, Mametjanov, Norris, Sabin, Sadayappan

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

ve
cD

ot_
e5

ve
cD

ot_
e6

ve
cD

ot_
e7

ve
cN

orm
2_

e5

ve
cN

orm
2_

e6

ve
cN

orm
2_

e7

N
or
m
ai
liz
ed

	
 E
xe
cu
0
on

	
 T
im

e	

Orio	
 CUSP	
 cuBLAS	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

4.5	

5.0	

ve
cD

ot_
e5

ve
cD

ot_
e6

ve
cD

ot_
e7

ve
cN

orm
2_

e5

ve
cN

orm
2_

e6

ve
cN

orm
2_

e7

N
or
m
al
iz
ed

	
 E
xe
cu
0
on

	
 T
im

e	

Orio	
 CUSP	
 cuBLAS	

Fig. 4.2: Execution time for reduction kernels, normalized by the cuBLAS time
(equal to 1.0 in these plots) on Tesla C2070 (left) and Tesla C1060 (right).

ilar improvements, is presented in [20].

4.2. Full Application Performance. We evaluate the performance of a full
application solving a 3-D solid fuel ignition (SFI) problem, defined as follows.

−∇2u− λeu = 0 in [0, 1]× [0, 1]× [0, 1]

u = 0 on the boundary

A finite-difference approximation with a seven-point (star) stencil is used to discretize
the boundary value problem in order to obtain a nonlinear system of equations. The
system is then solved by using PETSc’s Newton-Krylov iterative solvers.

The integration of the automatically generated and tuned CUDA implementations
and corresponding host code is not fully automated at this time, but we plan to
address it in the near future. For the complete application experiments, we integrated
a subset of the kernels in Table 4.2 required for the linear system solution using
restarted GMRES(m) with restart parameter m = 30, without preconditioning.1 In
addition to the linear solver kernels, in order to minimize CPU/GPU data transfers,
we also generate optimized CUDA code for the two application-specific functions,
FormFunction (stencil-based grid update) and FormJacobian (user-provided Jacobian
computation), which are called by the nonlinear solver to update the sparse linear
system and right-hand side. By automatically generating CUDA implementations of
FormFunction and FormJacobian, we can keep all data on the GPU, thus avoiding
the penalty of transfers at every nonlinear iteration.

Figure 4.3 compares the performance of the SFI application using two different
GPU implementations: the version including autotuned kernel implementations (tun-
ing parameters include threads per block, block count, and L1 size), based on the
SG-DIA format described in Section 3, and the Cusp-based implementations included
in the PETSc distribution. The results are normalized by the execution time for
the CPU version compiled with Intel compilers (-O3 optimization level) and linked
with the Intel MKL parallel library (using one thread per core on 8-core E5462 and
E5430 Xeon machines). For small problem sizes, the transfer costs dominate, and a
significant slowdown is observed in the GPU implementations. For larger problem

1The additional kernels required for preconditioning will be supported in the near future.

Stencil-Aware GPU Optimization of Iterative Solvers 17

sizes (shown in Figure 4.3), the GPU versions outperform the CPU ones, with the
autotuned version outperforming Cusp by up to a factor of 1.48 on the C2070 and up
to a factor of 2.16 on the C1060.

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

64x64x64	
 75x75x75	
 100x100x100	
 128x128x128	

N
or
m
al
iz
ed

	
 T
im

e	

Problem	
 Size	

GPU-­‐OrCuda	
 GPU-­‐Cusp	
 MKL	

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

64x64x64	
 75x75x75	
 100x100x100	
 128x128x128	

N
or
m
al
iz
ed

	
 T
im

e	

Problem	
 Size	

GPU-­‐OrCuda	
 GPU-­‐Cusp	
 MKL	

Fig. 4.3: Execution time for the SFI application, normalized by the CPU execution
time (equal to 1.0 in these plots) on an 8-core E5462 Xeon/Tesla C2070 (left) and an
8-core Xeon E5430/Tesla C1060 (right).

5. Related Work. Libraries such as Cusp [9,13], Thrust [10], and cuBLAS [23]
provide optimized CUDA implementations of many numerical kernels used in scientific
computing. These implementations, however, are not tunable for specific problem
characteristics. Furthermore, one cannot take advantage of spatial and temporal
locality in multiple consecutive operations on the same matrices or vectors. Our initial
investigation [20] on tunable CUDA implementations achieved superior performance
for several matrix and vector operations over these libraries. In our previous work [15],
we demonstrated the performance scaling of our SG-DIA format across degrees of
freedom and efficient bandwidth utilization on various GPU architectures.

The MAGMA project [21,26] aims to develop a library similar to LAPACK [3], but
for heterogeneous architectures, initially focusing on CPU+GPU systems. MAGMA
supports dense (full) matrix algebra, unlike our approach, which focuses on sparse
matrix algebra in support of stencil-based PDE discretizations.

Williams et al. [29] introduce an autotuning approach for optimizing the perfor-
mance of sparse matrix-vector products on multicore processors, considering many
parameters such as loop optimizations, SIMDization, and software prefetching. The
results for a variety of matrix structures, including diagonal, show that architecture-
specific optimizations consistently outperform off-the-shelf single approaches. Datta
et al. [11] explore optimizations targeting various multicore processors, including
GTX280 GPUs. The GPU optimizations and resulting performance gains at that
time were limited by the GTX280 double-precision features and required CPU-GPU
transfers.

Other autotuning systems are also beginning to target hybrid architectures. For
example, the combination of the CHiLL and ActiveHarmony tools can process C code
and empirically tune the generated CUDA code [18,25]. The goals of this approach are
similar to ours. Because the existing CPU code itself is used as input, the complexity
of the CPU implementation may prevent the optimization of CUDA code. Unlike
our domain-specific approach, this more general approach makes it harder to exploit
domain-specific properties, such as the regular structure of the stencil-based matrices.

Some commercial compilers and libraries have begun to exploit autotuning in-

18 Choudary, Godwin, Holewinski, Karthik, Lowell, Mametjanov, Norris, Sabin, Sadayappan

ternally (e.g., Cray, Intel). However, that functionality is limited to vendor libraries
and is not generally available to arbitrary codes. The significant exception among
mainstream compilers is the open-source GNU Compiler Collection (GCC) [14] and
specifically the Milepost GCC component [12], which employs a machine-learning-
based approach that performs optimizations based on a set of code features. To our
knowledge, GCC does not generate and optimize CUDA (or other GPU) code yet.
The recent open-source release of the CUDA backend of nvcc presents interesting new
opportunities for integrating application-specific autotuning.

6. Conclusions and Future Work. The work described here is the first neces-
sary step toward enabling the semi-automated creation of libraries tuned for specific
applications and target architectures. We show the performance benefit of employing
autotuning in GPU code generation, with a focus on single functions with are com-
putationally significant. The next steps are to increase the number of supportable
kernels and extend Orio to enable tuning at higher levels of the call graph, enabling
more types of optimizations, such as operation reordering and fusion of the underlying
loops.

The autotuning process is not completely automatic. We are working on automat-
ing several of the currently manual steps, including the selection of kernel inputs to
use in the tuning and the integration of the tuned code into the library and applica-
tion source code (which requires relatively little effort but can be a barrier to wider
use of autotuning).

Acknowledgments. This work was supported by the U.S. Department of En-
ergy Office of Science under Contract No. DE-FOA-0000350 and DE-AC02-06CH11357.
We thank Barry Smith of Argonne and other members of the PETSc team for fruitful
discussions and ongoing support.

REFERENCES

[1] ELLPACK: Software for Solving Elliptic Problems. http://www.cs.purdue.edu/ellpack/,
2012. Last accessed June 30, 2012.

[2] Top 500 Supercomputing Sites. http://www.top500.org, 2012. Last accessed June 30, 2012.
[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Ham-

marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM,
Philadelphia, PA, second edition, 1995.

[4] P. Balaprakash, S. Wild, and B. Norris. SPAPT: Search problems in automatic performance
tuning. In Proceeding of the ICCS Workshop on Tools for Program Development and
Analysis in Computational Science, number Also available as Preprint ANL/MCS-P1872-
0411, 2012.

[5] S. Balay, J. Brown, , K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report
ANL-95/11 - Revision 3.2, Argonne National Laboratory, 2011.

[6] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
B. F. Smith, and H. Zhang. PETSc Web page, 2011. http://www.mcs.anl.gov/petsc.

[7] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in
object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtan-
gen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser
Press, 1997.

[8] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA
Technical Report NVR-2008-004, NVIDIA Corporation, Dec. 2008.

[9] N. Bell and M. Garland. Cusp: Generic parallel algorithms for sparse matrix and graph
computations, 2012. Version 0.3.0.

[10] N. Bell and J. Hoberock. Thrust: A productivity-oriented library for CUDA. In W. mei
W. Hwu, editor, GPU Computing Gems, Jade Edition. Oct. 2011.

http://www.cs.purdue.edu/ellpack/
http://www.top500.org

Stencil-Aware GPU Optimization of Iterative Solvers 19

[11] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectures. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC
’08, pages 4:1–4:12, Piscataway, NJ, USA, 2008. IEEE Press.

[12] G. Fursin, Y. Kashnikov, A. Memon, Z. Chamski, O. Temam, M. Namolaru, E. Yom-Tov,
B. Mendelson, A. Zaks, E. Courtois, F. Bodin, P. Barnard, E. Ashton, E. Bonilla,
J. Thomson, C. Williams, and M. OBoyle. Milepost GCC: Machine learning enabled
self-tuning compiler. International Journal of Parallel Programming, 39:296–327, 2011.
10.1007/s10766-010-0161-2.

[13] R. Galvez and G. van Anders. Accelerating the solution of families of shifted linear systems
with CUDA. http://arxiv.org/abs/1102.2143, 2011.

[14] GNU Project. GCC, the GNU Compiler Collection. http://gcc.gnu.org/, 2012.
[15] J. Godwin, J. Holewinski, and P. Sadayappan. High-performance sparse matrix-vector mul-

tiplication on GPUs for structured grid computations. In Proceedings of the 5th Annual
Workshop on General Purpose Processing with Graphics Processing Units, GPGPU-5,
pages 47–56, New York, NY, USA, 2012. ACM.

[16] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. K. namoorth, B. Norris, J. Ramanujam,
and P. Sadayappan. PrimeTile: A parametric multi-level tiler for imperfect loop nests. In
Proceedings of the 23rd International Conference on Supercomputing, IBM T.J. Watson
Research Center, Yorktown Heights, NY, USA, June 2009.

[17] Hypre. http://acts.nersc.gov/hypre/, 2012. Last accessed June 30, 2012.
[18] M. Khan, J. Chame, G. Rudy, C. Chen, M. Hall, and M. Hall. Automatic high-performance

GPU code generation using CUDA-CHiLL, 2011. poster.
[19] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory sparse direct solver

for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110–140, June
2003.

[20] A. Mametianov, D. Lowell, C.-C. Ma, and B. Norris. Autotuning stencil-based computations
on GPUs. In Proceedings of IEEE International Conference on Cluster Computing (Clus-
ter’12), 2012. To appear.

[21] R. Nath, S. Tomov, and J. Dongarra. An improved Magma Gemm for Fermi graphics processing
units. International Journal of High Performance Computing Applications, 24(4):511–515,
2010.

[22] B. Norris, A. Hartono, E. Jessup, and J. Siek. Generating empirically optimized composed
matrix kernels from MATLAB prototypes. In Proceedings of the International Conference
on Computational Science 2009, 2009. Also available as Preprint ANL/MCS-P1581-0209.

[23] NVIDIA. NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS) Library. http://

developer.nvidia.com/cublas, 2012. Last accessed April 28, 2012.
[24] NVIDIA. NVIDIA CUDA C Programming Guide Version 4.2, 2012.
[25] G. Rudy. CUDA-CHiLL: A Programming Language Interface for GPGPU Optimizations and

Code Generation. PhD thesis, The University of Utah, Aug. 2010.
[26] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid GPU

accelerated manycore systems. Parallel Computing, 36(5–6):232–240, 2010.
[27] Trilinos. http://trilinos.sandia.gov/, 2012. Last accessed June 30, 2012.
[28] N. K. Vasileios Karakasis, Georgios Goumas. Performance models for blocked sparse matrix-

vector multiplication kernels. In Proceedings of the International Conference on Parallel
Processing 2009, 2009.

[29] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of
sparse matrix-vector multiplication on emerging multicore platforms. Parallel Comput-
ing, 35(3):178–194, 2009.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (”Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

http://arxiv.org/abs/1102.2143
http://gcc.gnu.org/
http://acts.nersc.gov/hypre/
http://developer.nvidia.com/cublas
http://developer.nvidia.com/cublas
http://trilinos.sandia.gov/

